The structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily.

نویسندگان

  • M Joanne Lemieux
  • Yafei Huang
  • Da-Neng Wang
چکیده

The major facilitator superfamily represents the largest group of secondary active membrane transporters in the cell. The 3.3A resolution structure of a member of this protein superfamily, the glycerol-3-phosphate transporter from the Escherichia coli inner membrane, reveals two domains connected by a long central loop. These N- and C-terminal domains, each containing a six-helix bundle, are related by pseudo-twofold symmetry. A substrate translocation pore is located between the two domains and is open to the cytoplasm. Two arginines at the closed end of the pore comprise the substrate-binding site. Biochemical experiments show that, upon substrate binding, the protein adopts a more compact conformation. The crystal structure suggests that the transporter operates through a single binding site, alternating access mechanism via a rocker-switch type of movement of the N- and C-terminal domains. The structure and mechanism of the glycerol-3-phosphate transporter form a paradigm for other members of the major facilitator superfamily.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli.

The major facilitator superfamily represents the largest group of secondary membrane transporters in the cell. Here we report the 3.3 angstrom resolution structure of a member of this superfamily, GlpT, which transports glycerol-3-phosphate into the cytoplasm and inorganic phosphate into the periplasm. The amino- and carboxyl-terminal halves of the protein exhibit a pseudo two-fold symmetry. Cl...

متن کامل

Crystal structure and mechanism of GlpT, the glycerol-3-phosphate transporter from E. coli.

The major facilitator superfamily represents the largest group of secondary active membrane transporters in prokaryotic and eukaryotic cells. They transport a vast variety of substrates, presumably via similar mechanisms, yet the details of these mechanisms remain unclear. Here we report the 3.3 A resolution structure of a member of this superfamily--GlpT, the glycerol-3-phosphate transporter f...

متن کامل

Structural basis of substrate selectivity in the glycerol-3-phosphate: phosphate antiporter GlpT.

Major facilitators represent the largest superfamily of secondary active transporter proteins and catalyze the transport of an enormous variety of small solute molecules across biological membranes. However, individual superfamily members, although they may be architecturally similar, exhibit strict specificity toward the substrates they transport. The structural basis of this specificity is po...

متن کامل

Salt-bridge dynamics control substrate-induced conformational change in the membrane transporter GlpT.

Active transport of substrates across cytoplasmic membranes is of great physiological, medical and pharmaceutical importance. The glycerol-3-phosphate (G3P) transporter (GlpT) of the E. coli inner membrane is a secondary active antiporter from the ubiquitous major facilitator superfamily that couples the import of G3P to the efflux of inorganic phosphate (P(i)) down its concentration gradient. ...

متن کامل

High-yield expression and functional analysis of Escherichia coli glycerol-3-phosphate transporter.

The glycerol-3-phosphate (G3P) transporter, GlpT, from Escherichia coli mediates G3P and inorganic phosphate exchange across the bacterial inner membrane. It possesses 12 transmembrane alpha-helices and is a member of the Major Facilitator Superfamily. Here we report overexpression, purification, and characterization of GlpT. Extensive optimization applied to the DNA construct and cell culture ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current opinion in structural biology

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 2004